Extensions 1→N→G→Q→1 with N=C22 and Q=C4xD7

Direct product G=NxQ with N=C22 and Q=C4xD7
dρLabelID
D7xC22xC4112D7xC2^2xC4224,175

Semidirect products G=N:Q with N=C22 and Q=C4xD7
extensionφ:Q→Aut NdρLabelID
C22:1(C4xD7) = Dic7:4D4φ: C4xD7/Dic7C2 ⊆ Aut C22112C2^2:1(C4xD7)224,76
C22:2(C4xD7) = C4xC7:D4φ: C4xD7/C28C2 ⊆ Aut C22112C2^2:2(C4xD7)224,123
C22:3(C4xD7) = D7xC22:C4φ: C4xD7/D14C2 ⊆ Aut C2256C2^2:3(C4xD7)224,75

Non-split extensions G=N.Q with N=C22 and Q=C4xD7
extensionφ:Q→Aut NdρLabelID
C22.1(C4xD7) = D28.C4φ: C4xD7/Dic7C2 ⊆ Aut C221124C2^2.1(C4xD7)224,102
C22.2(C4xD7) = D28.2C4φ: C4xD7/C28C2 ⊆ Aut C221122C2^2.2(C4xD7)224,96
C22.3(C4xD7) = C23.1D14φ: C4xD7/D14C2 ⊆ Aut C22564C2^2.3(C4xD7)224,12
C22.4(C4xD7) = C28.46D4φ: C4xD7/D14C2 ⊆ Aut C22564+C2^2.4(C4xD7)224,29
C22.5(C4xD7) = C4.12D28φ: C4xD7/D14C2 ⊆ Aut C221124-C2^2.5(C4xD7)224,30
C22.6(C4xD7) = C23.11D14φ: C4xD7/D14C2 ⊆ Aut C22112C2^2.6(C4xD7)224,72
C22.7(C4xD7) = D7xM4(2)φ: C4xD7/D14C2 ⊆ Aut C22564C2^2.7(C4xD7)224,101
C22.8(C4xD7) = C8xDic7central extension (φ=1)224C2^2.8(C4xD7)224,19
C22.9(C4xD7) = Dic7:C8central extension (φ=1)224C2^2.9(C4xD7)224,20
C22.10(C4xD7) = C56:C4central extension (φ=1)224C2^2.10(C4xD7)224,21
C22.11(C4xD7) = D14:C8central extension (φ=1)112C2^2.11(C4xD7)224,26
C22.12(C4xD7) = C14.C42central extension (φ=1)224C2^2.12(C4xD7)224,37
C22.13(C4xD7) = D7xC2xC8central extension (φ=1)112C2^2.13(C4xD7)224,94
C22.14(C4xD7) = C2xC8:D7central extension (φ=1)112C2^2.14(C4xD7)224,95
C22.15(C4xD7) = C2xC4xDic7central extension (φ=1)224C2^2.15(C4xD7)224,117
C22.16(C4xD7) = C2xDic7:C4central extension (φ=1)224C2^2.16(C4xD7)224,118
C22.17(C4xD7) = C2xD14:C4central extension (φ=1)112C2^2.17(C4xD7)224,122

׿
x
:
Z
F
o
wr
Q
<